
Mobile Gaming on Personal Computers with
Direct Android Emulation

Qifan Yang1,2, Zhenhua Li1�, Yunhao Liu1,3, Hai Long2,
Yuanchao Huang2, Jiaming He2, Tianyin Xu4, Ennan Zhai5

1Tsinghua University 2Tencent Co. Ltd. 3Michigan State University 4UIUC 5Yale University

ABSTRACT

Playing Android games on Windows x86 PCs has gained
enormous popularity in recent years, and the de facto solu-
tion is to usemobile emulators built with the AOVB (Android-
x86 On VirtualBox) architecture. When playing heavy 3D
Android games with AOVB, however, users often suffer un-
satisfactory smoothness due to the considerable overhead
of full virtualization. This paper presents DAOW, a game-
oriented Android emulator implementing the idea of direct
Android emulation, which eliminates the overhead of full vir-
tualization by directly executing Android app binaries on top
of x86-based Windows. Based on pragmatic, efficient instruc-
tion rewriting and syscall emulation, DAOW offers foreign
Android binaries direct access to the domestic PC hardware
through Windows kernel interfaces, achieving nearly native
hardware performance. Moreover, it leverages graphics and
security techniques to enhance user experiences and prevent
cheating in gaming. As of late 2018,DAOW has been adopted
by over 50 million PC users to run thousands of heavy 3D
Android games. Compared with AOVB,DAOW improves the
smoothness by 21% on average, decreases the game startup
time by 48%, and reduces the memory usage by 22%.

ACM Reference Format:

Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuanchao Huang,
Jiaming He, Tianyin Xu, and Ennan Zhai. 2019. Mobile Gaming
on Personal Computers with Direct Android Emulation. In The

25th Annual International Conference on Mobile Computing and

Networking (MobiCom ’19), October 21–25, 2019, Los Cabos, Mexico.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3300061.
3300122

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3300122

1 INTRODUCTION

As one killer application of PCs andmobile devices, computer
games make a billion-dollar business: as of 2018, the world-
wide market is valued at 137.9 billion US dollars [52]. The
evolution of computer games has driven a number of techni-
cal innovations in terms of both hardware (larger memories,
faster CPUs, and graphics cards) and software (e.g., multime-
dia support and OS kernel improvements) [12].
Along with the proliferation of mobile devices, mobile

gaming has become the largest segment of the market: mo-
bile games contribute to 51% of all game revenues in 2018 [52].
As a result, many game vendors prioritize implementing mo-
bile games over their PC or console versions. Today, few
mobile games have corresponding PC versions due to the
tremendous efforts for porting mobile-based implementa-
tion onto PC platforms with different OSes and architectures.
Even with tool support (e.g., Unity [44] and Unreal [45]), the
porting is non-trivial—existing tools provide neither correct-
ness guarantee nor usability control.

The mobile-first game development creates high demands
for supporting mobile games on PC platforms [34], driven
by at least three motivations. First, some users may want
to play games that only provide mobile versions, while not
owning the required mobile devices. Second, the gaming
experiences are generally better with PCs’ large screen and
high resolution. Third, PC-based gaming can deliver better
control via the physical keyboard and accuratemouse control.
As a matter of fact, there have beenmore than 70 competitors
in the PC-based mobile game market [11].

The de facto solution for playing mobile games on PCs is
often dependent onmobile emulators, such as Bluestacks [10],
Genymotion [18], KoPlayer [27], Nox [9], and MEmu [31].
All these game-oriented emulators use a full virtualization
architecture, known as AOVB (Android-x86 On VirtualBox)—
running Android-x86 [5] on top of a VirtualBox [47] virtual
machine (VM). Android-x86 is an x86 porting of the Android
OS, and VirtualBox bridges Android-x86 (the guest OS) to
the host OS (e.g.,Windows). Given that most Android games
rely on native ARM libraries, Intel Houdini [4] is typically
used for translating ARM instructions into x86 instructions
at the binary level. The AOVB architecture gains popularity

https://doi.org/10.1145/3300061.3300122
https://doi.org/10.1145/3300061.3300122
https://doi.org/10.1145/3300061.3300122

for its free, open-source nature, and most importantly being
fully transparent to unmodified mobile game binaries.

While AOVB-based emulators can run most mobile games,
they only provide desired gaming experiences for 2D games
and less interactive 3D games. For heavy 3D games (cf. §4.1)
like Vainglory [38] and PUBG Mobile [41], AOVB-based em-
ulators lead to significantly degraded gaming experiences
(measured by smoothness, cf. §3.1). Note that gaming is differ-
ent frommany other applications, in which millisecond-level
stagnation can be detrimental to the overall experience.
We have built and maintained an AOVB-based emulator

(referred to as AOVB-EMU), which has been used by more
than 30 million users to run over 40,000 Android game apps.
Our measurement of its user experiences shows that the per-
formance bottleneck roots in the considerable overhead of
full virtualization (§3.2). With the goal of supporting heavy
mobile games, we apply a series of para-virtualization and
hardware-assisted optimizations to AOVB-EMU (§3.3), in-
cluding GPU acceleration for graphic processing, VirtIO [36]
for increasing the bandwidth of rendering pipelines, and In-
tel VT [43]. While these optimizations substantially increase
the smoothness when running heavy 3D games, they are
insufficient to provide the desired experiences. To address
this, we need to break the boundary of virtualization.

This paper presents DAOW [39] which, to the best of our
knowledge, is the first and the only emulator that can pro-
vide the same level of smoothness for running heavy 3D
Android games on Windows PCs, as being played natively
on Android phones. This is accomplished based on the idea
of direct Android emulation, which directly executes Android
app binaries on top of x86-based Windows. More specifically,
DAOW provides foreign Android binaries with direct access
to the domestic PC hardware through Windows kernel inter-
faces, thus achieving nearly native hardware performance.
Direct Android emulation faces a number of challenges

from the distinctions at the levels of ISA (ARM vs. x86), OS
(Android vs. Windows), and device control (touch screen
vs. physical keyboard and mouse). First, data structures and
execution behavior of binaries are distinct between Android
and Windows. Instruction-level rewriting can fix the dis-
tinction, but change the layout of the original binaries and
complicate the implementation. Second, Android/Linux and
Windows have different sets of system calls (syscalls). Trans-
lating Linux syscalls to Windows requires significant engi-
neering efforts, as well as incurring large runtime overhead if
not appropriately implemented. Third, there is an interaction
gap between mobile and PC-based gaming. PC games use
physical keyboards and mouses for inputs; mobile games
define a variety of buttons in different contexts. Also, PCs’
large screens could enlarge the subtle rendering issues of
mobile games, causing uncomfortable aliasing effect.

DAOW Emulator App Instance

Windows

Syscalls

(10/7/XP)

Media Host

User mode

Kernel mode

Graphics
Anti-Aliasing

Input
Context-aware
Key Mapping

Sound
Memory Mapping I/O

Shared

Memory

Linux ARM
Binary

Compatible
Linux x86

Binary

Smoothness
Evaluator

fork

Syscall
Handler

Translation

Execution

Linux
syscall

dynamic
translation

Customized
Android-x86

Compatible
Android-x86

Binary

rewrite-
on-load

DAOW Kernel Driver
DAOW

Syscalls

Linux
syscall

Figure 1: Architectural overview of DAOW.

We address these challenges with the following endeavors
in the design and implementation of DAOW:
• We take a data-driven, pragmatic approach to fulfill cost-

efficient instruction rewriting and syscall emulation. We
comprehensively profile the instructions and syscalls used
in a wide variety of Android game apps. Based on this, we
reduce the many different types of instructions that need
rewriting to only a few “patterns”; for each pattern, we
utilize trampolines and write native Windows utility func-
tions to minimize the changes in binary structures during
instruction rewriting. Besides, we prioritize supporting
the popular syscalls while treat the rarely used ones as
exceptions; we also exploit the “common divisors” among
the syscalls to greatly simplify the engineering efforts.

• Wemake a number of optimizations inDAOW to improve its

performance.We enhance the efficiency of syscall emula-
tion through extensive resource sharing, early preparation,
and delayed execution. We also use shared memory for
direct bulk data transfer between the app instances and
the media component for real-time user interactions. In
addition, we employ security approaches to prevent ex-
ternal cheating programs (e.g., aimbot and speed hack on
Windows) from modifying Android game app instances.

• We leverage a series of graphics techniques to bridge the in-

teraction gap between mobile and PC-based gaming.We de-
sign an intelligent mapping technique which dynamically
detects on-screen buttons and maps them to appropriate
keys of the physical keyboards. Moreover, we design a
progressive anti-aliasing method that assembles multiple
existing techniques to smoothen rendering distortion and
eliminate aliasing, without user-perceived overhead.
Figure 1 plots the system architecture that embodies our

design of DAOW with three components: 1) Emulator, 2)
Kernel Driver, and 3) Media Host. The Emulator inits a
customized Android framework which is decoupled from

the original Android-x86 distribution (by removing the built-
in Linux kernel and the unused services), and rewrites its
binaries while loading them into memory. The Emulator
then forks a Windows process for running an Android game
app, where ARM binaries are dynamically translated into
x86 binaries. The Kernel Driver handles Linux syscalls via a
series of DAOW syscalls (i.e., our refined “common divisors”
among Linux syscalls)—they are either directly executed or
translated into Windows syscalls for execution. In addition,
Media Host deals with user input, sound, and graphics issues,
as well as measures the smoothness of the game.

DAOW is implemented in ∼500K lines of C++ code. Since
its first launch in Sep. 2017, it has been used by 50+ million
users to run ∼8000 heavy Android games on Windows PCs.
Compared with AOVB-EMU, DAOW improves the smooth-
ness by an average of 21%, from 0.76 (“rarely smooth”) to
0.92 (“mostly smooth”), for millions of users when playing
heavy 3D games. Also, it decreases the game startup time by
48% and the memory usage by 22% on average.

2 STATE OF THE ART

As listed in Table 1, we compare seven mainstream PC-based
mobile gaming systems with large user bases, including our
developed AOVB-EMU and DAOW. We focus on comparing
five important features: 1) architecture, 2) accessibility, 3)
syscall handling, 4) syscall coverage, and 5) media adaptation.
First, we study the basic architecture of these systems.

Among them, Unity is the only one that generates a new PC
game’s program by compiling the original Android game’s
program.While this compilation approach earns the best per-
formance, it sacrifices transparency to the game developers.
On the contrary, Bluestacks and AOVB-EMU employ full vir-
tualization based on the AOVB architecture, possessing fine
transparency while bringing considerable overhead. Remix
OS [25] runs Android-x86 on Linux PCs with specific drivers,
so it does not require a hypervisor like VirtualBox. Differ-
ent from Remix OS, Chromebooks use containers to host
Android app instances on the Linux-based Chrome OS [13].
Neither Remix OS nor Chromebooks support Windows, the
most popular PC operating system. As for Windows, a Linux
subsystem called WSL is emulated in its version 10 distribu-
tion (64-bit) [32]; although WSL is not designed for mobile
scenarios, some Android apps should be able to run atop
the Linux subsystem in principle. Lastly, DAOW not only
emulates Linux syscalls but also rewrites Android binaries,
thus achieving direct Android emulation on Windows.

Second, we compare the accessibility of each system,which
refers to the minimal effort users have to make before using
it. We observe that systems like Remix OS, Microsoft WSL,
and Android on Chrome OS have worse accessibility than the
rest, because they either require users to install a specific OS

(e.g.,Windows 10 64-bit) or enforce users to purchase specific
equipments (e.g., Chromebook). In comparison, Unity, Blues-
tacks, AOVB-EMU and DAOW only require users to install
additional software packages, leading to better accessibility.

Next, we examine their syscall handlingmechanismswhich
can be classified into three groups. Unity, Remix OS, and An-
droid on Chrome OS are the first group that have no kernel-
level compatibility problems by nature; thus, their syscalls
are directly handled by the sole kernel taking full control of
hardware, which can achieve the best efficiency. In compari-
son, AOVB-based systems take advantage of the hypervisor
(VirtualBox) to handle all syscalls. The third group, including
WSL and DAOW, handle Linux syscalls based on Windows
kernel interfaces with specific strategies, which inevitably
incurs extra runtime overhead. To address this shortcoming,
DAOW utilizes the specially designed Kernel Driver and a
series of optimizations for enhanced performance.

Fourth, we notice their syscall coverage is tightly related
to their syscall handling and implementation manners. For
instance, sinceWSL is a “clean room”1 implementation of the
Linux kernel’s application binary interface (ABI), it passes
1466 out of 1904 Linux Test Project (LTP) test cases [29] [33].
Through comprehensive analysis (§4.5), we find that imple-
menting 218 Linux syscalls is generally sufficient for DAOW
to support nearly all games; similarly, Tsai et al. report that
a common Ubuntu installation requires 224 syscalls [42].
Finally, we compare how these systems adapt to interac-

tion gaps between PCs and mobile devices. There are mainly
three approaches. The first approach, used by Unity and An-
droid on Chrome OS, leaves the burden to app developers;
however, only a few mobile games respond to PCs’ keyboard
events, so it is non-trivial for developers to support it. The
second approach is to employ static key mapping predefined
by users, i.e.,mapping every possible button and multi-touch
gesture on the screen to a fixed key. It does not work well
in heavy (e.g., 3D FPS) games with complex user inputs.
AOVB-EMU and DAOW use a new approach: we dynami-
cally detect on-screen buttons and intelligently map them to
a small number of user-friendly keys. We also detect aliasing
and apply anti-aliasing techniques to all games. Note that
we implement memory mapping I/O in DAOW rather than
AOVB-EMU, as shared memory can hardly be achieved in
AOVB due to the hindrance of full virtualization.

In general, the comparison shows that DAOW has the
most practical architecture that balances performance and
transparency, as well as the best accessibility andmedia adap-
tation. Although syscall handling and coverage of DAOW
are slightly decreased compared with full virtualization, our

1“Clean room” means that WSL contains no code from the Linux kernel. In
fact, WSL has a policy that its developers cannot even look at any of the
Linux kernel source code [32]. This policy is also adopted by DAOW.

Table 1: Comparison of state-of-the-art PC-based mobile gaming systems.

System Architecture Accessibility Syscall Handling Syscall Coverage Media Adaptation

Unity [44] Program compilation Software installation Windows kernel All Developer coordination

Bluestacks [10] AOVB Software installation Hypervisor,
Dynamic translation All Static key mapping

AOVB-EMU AOVB Software installation Hypervisor,
Dynamic translation All Context-aware key mapping,

Anti-aliasing

Remix OS [25] Android-x86 with
Linux PC drivers Linux OS installation Linux kernel,

Dynamic translation All Static key mapping

Android on
Chrome OS [13]

Container-hosted
Android emulation on Linux Chromebook Linux kernel,

Dynamic translation All Standard Android events

Microsoft
WSL [32]

Linux subsystem emulation
on Windows Windows 10 64-bit Windows kernel

with pico-provider
1466/1900+
LTP tests –

DAOW [39] Direct Android emulation
on Windows Software installation

Rewriting on load,
Dynamic translation,
DAOW Kernel Driver

218/370+
syscalls

Context-aware key mapping,
Memory mapping I/O,

Anti-aliasing

experiences show that de-prioritizing the support for rarely-
used Linux syscalls brings little negative effect in practice.

Apart from the abovementioned production systems, our
work also benefits from research prototypes of OS virtual-
ization, such as Cells [15], Cider [6] and Drawbridge [22].
In order to run multiple virtual Android phones on top of
a physical Android phone, Cells uses device namespaces to
provide isolation and efficient hardware resource multiplex-
ing. Somewhat similarly, in order to run Android OS and
app instances on top of a Windows PC, DAOW introduces
kernel spaces (via the Kernel Driver) and the Media Host
to multiplex the PC hardware. Besides, although Cider tar-
gets native execution of iOS apps on Android (rather than
PC-based mobile execution), it also offers foreign binaries
domestic access to underlying hardware and software in pur-
suit of native performance. Moreover, to run POSIX-based
applications on Windows PCs, Drawbridge implements core
POSIX APIs on Windows by leveraging a series of “embassy”
interfaces; further, to practically support rich-media Android
games, DAOW efficiently emulates necessary Linux syscalls
on Windows by leveraging a series of intermediate syscalls.

3 UNDERSTANDING AOVB

Since its first launch in Dec. 2015, AOVB-EMU has attracted
30M+ users playing tens of thousands of Android games
on Windows PCs per month. The basic implementation of
AOVB-EMU follows the AOVB architecture: running the
vanilla Android-x86 (version 4.4.4) on a PC-based VirtualBox
(version 5.1.10) VM, coupled with Intel Houdini for dynamic
binary translation to support the native ARM libraries.
As shown in Figure 2, Android-x86 and the Android app

instance run natively on CPU Ring-3. Unlike running on
Ring-0 in native Android, the Linux kernel in VirtualBox is
reconfigured to Ring-1 by VirtualBox (which is also adopted
by Xen [7]). When the Linux kernel executes a privileged
instruction, it traps and the VMMRC kernel driver steps in

Ring-3

Ring-1

Ring-0

Android-x86

Linux Kernel

VMMRC VMMR0
VMM switch

syscall

trap

control

VirtualBox.exe
Android App

Instance

VirtualBox Instance

Ring-2

Figure 2: Architectural overview of the basic implementa-

tion of AOVB-EMU. Here VMMRC is VirtualBox Raw Con-

text and VMMR0 is VirtualBox Host Context Ring-0.

to handle the fault or external interrupts. It makes a VMM
switch to the VMMR0 kernel driver for privileged resource
emulation such as clock interrupt, physical memory alloca-
tion, and device emulation. User input and virtual display are
also emulated by VMMR0 and ridged to VirtualBox.exe.
In this section, we first devise a novel metric for quanti-

fying the smoothness of mobile game emulation, and then
present AOVB-EMU’s bottleneck and optimizations.

3.1 Quantifying Smoothness

Smoothness is the primary measure of gaming experience.
There are several metrics used to quantify smoothness, e.g.,
Dune [19] and TinyDancer [53] use skipped frame ratio re-
ported by Choreographer (an Android system component
often used by normal apps but not games) tomeasure smooth-
ness, while 3DMark Benchmark [17] uses frame rates as the
metric. There are also proposals for taking the variation of
frame rates into account [51]. We find that existing met-
rics each capture one important aspect of Android gaming
smoothness; however, there are more practical issues to con-
sider for a comprehensive evaluation.

0 20 40 60
Frame Rate

Perfe
ct 1.0

Fluent 0.8

Acceptable 0.6

Painful 0.4

Unbearable 0.1

N
or

m
al

iz
ed

S
co

re

2D Chess

2D RPG

3D FPS

Figure 3: Normalized frame-rate score

(i.e., user-perceived smoothness when

there is no fluctuation of frame rates) de-

pends on both frame rate and game genre.

0 50 100 150 200
Time (sec)

20

25

30

35

F
ra

m
e

R
at

e

Smoothness: 0.617, User Rating: 0.594

Smoothness: 0.658, User Rating: 0.671

Figure 4: For a 3D FPS game, while

the two curves have the same (quite

low) average frame rate, their user-

perceived smoothnesses are different.

0 50 100 150 200
Time (sec)

52

54

56

58

F
ra

m
e

R
at

e

Smoothness: 0.993, User Rating: 0.976

Smoothness: 0.997, User Rating: 0.983

Figure 5: For a 3D FPS game, when

the two curves have the same (quite

high) average frame rate, their user-

perceived smoothnesses are similar.

Seeking for a comprehensive smoothness metric, we in-
vited more than 100 users to report their ratings of perceived
smoothness when playing a variety of representative An-
droid games (covering all genres). The rating scale is quite
coarse-grained to calibrate users’ perceptions: unbearable
(0.1), painful (0.4), acceptable (0.6), fluent (0.8), and perfect
(1.0). We have three insights from the collected data. First,
the relationship between frame rate and smoothness is not
only non-linear but also game-genre dependent as illustrated
in Figure 3. Second, when frame rates are not high enough,
smoothness is also influenced by the fluctuation of frame
rates, as depicted in Figure 4. Third, when frame rates are
high enough, smoothness is seldom affected by the fluctua-
tion of frame rates, as shown in Figure 5.
Driven by the above insights, we devise a fine-grained

smoothness metric. The smoothness of a game execution at
the t-th second is defined as:

Smoothnesst = Nt ∗ (1 − Penalty(Nt−1,Nt)). (1)
Nt is the normalized frame-rate score lying between 0 and

1.0, which is calculated as
Nt = f (FRt ,Genreдame), (2)

where FRt is the frame rate, Genreдame is the genre of the
game (e.g., 2D Chess, 3D RPG, and 3D FPS), and f is the
normalization function demonstrated in Figure 3.
Penalty(Nt−1,Nt) denotes the penalty caused by the fluc-

tuation of frame rates in two consecutive seconds:

Penalty(Nt−1,Nt) =

{ Nt−1−Nt
Nt−1

, Nt−1 > Nt ,

0, Nt−1 ≤ Nt ,
(3)

which indicates that a decrease of frame rates leads to a
penalty (inversely proportional to the frame rate in the (t−1)-
th second) but an increase does not. When the frame rates
stay high, the penalty would be little to zero, which complies
with users’ perceptions.

Our experiences interacting with users show that the de-
vised metric approximates their perception of smoothness,
as demonstrated in Figure 4 and Figure 5.

3.2 Bottleneck

When heavyAndroid 3D games are played on PCs, the results
in Figure 6 show that AOVB-EMU bears extremely poor
smoothness (≤ 0.12 on average). By carefully examining
each procedure happening in the AOVB architecture, we
find the issue is mainly attributed to the overhead of VMM
switch—as demonstrated in Figure 2, when the Linux kernel
is accessing privileged resources, the hypervisor steps in and
makes a VMM switch to VMMR0 for privileged resource
emulation, consuming 2.5× of the native process switching
time. Furthermore, when running heavy Android games, we
notice VMM switches frequently happen for CPU interrupts
(50%), I/O (22% and 13% for read and write respectively),
and inner timer (10%). This concludes that the performance
bottleneck of AOVB stems from full virtualization.
Figure 7 depicts how context switch works between two

threads of an app in (a) Android-x86 native execution on a
Linux PC, and (b) the basic implementation of AOVB-EMU
on a Windows PC. In (a), the first app thread directly wakes
the second thread up and puts itself to sleep (i.e., switch on a
CPU core) by invoking a Linux syscall, costing merely 0.4 µs
on average. In (b), there are two extra steps (trap and VMM
switch) involved, bringing an additional time cost of 3.4 µs .
Hence in this case, virtualization significantly increases the
time cost of context switch by 9×. Such context switches hap-
pen frequently in heavy Android games, where 20+ active
threads bring over 10K switches per second in a single pro-
cess on average. If VT (Intel Virtualization Technology[43]
or AMD Virtualization[1]) is not turned on, the only one
available virtual CPU core on VirtualBox would bring extra
overhead on the context switching latency, because parallel
context switches need to be performed by a single CPU core.

3.3 Optimizations

To address the performance bottleneck of AOVB-EMU, we
mainly make the following optimizations [2, 3]:

AOVB +GPU +VirtIO +VT Native
Optimization

0.0

0.2

0.4

0.6

0.8

1.0

S
m

o
ot

hn
es

s

using error bar of STD

All PCs

Low-end PCs

Figure 6: Running smoothness of

heavy 3D games for AOVB-EMU after

various optimizations are applied, on

all PCs and low-end PCs respectively.

App
thread1

Linux
Kernel

VMMRC

VMMR0

syscall

trap

VMM switch

App
thread1

(3)

Linux
kernel

0.5 us

(a) Native Execution (b) Basic AOVB

App
thread2

(4)
App

thread2

App
thread3

App
thread4

syscall

12.6 us

context

switch

context

switch

App
thread1

Linux
Kernel

VMMRC

VMMR0

syscall

trap

VMM switch

App
thread1

Linux
kernel

0.14 us

(a) Native Execution (b) Basic AOVB

App
thread2

App
thread2

syscall
2.6 us

0.8 us

0.14 us

0.26 us

0.26 us

Figure 7: Context switching between two

threads of an app in (a) Android-x86 native

execution and (b) the basic implementation

of AOVB-EMU.

Native libraries
lib/armeabi-v7a

Vainglory.apk App Instance

Dalvik VMclasses.dex

libGameKindred.so

libfmod.so

lib/x86
(missing)

libfmod

load &
execute

load

through
JNI

libGameKindred

libclibGLESv2

load

Figure 8: Runtime overview of an

Android game.

• GPU acceleration: VirtualBox does not provide 3D acceler-
ation for Android [48] but GPUs can be used to accelerate
graphics processing. To fully exploit PCs’ capabilities, all
OpenGL instructions in Android are intercepted, encoded,
and transferred to the GPU driver for executions.

• Adopting VirtIO: As a virtual I/O interface, VirtIO is used to
increase the throughput of the rendering data pipeline be-
tween Android and Media Host. It constructs a ring buffer
for efficient data transmission, and needs the collaboration
between the Linux kernel and VirtualBox hypervisor.

• Enabling VT: We instruct our users to turn on VT via BIOS
configuration to leverage hardware-assisted virtualization
support. Eventually, 57% of AOVB-EMU users have en-
abled VT. For AOVB-EMU with VT, we enable additional
acceleration techniques of VirtualBox such as Nested pag-
ing and VPIDs [49] which greatly reduce the overhead of
VM exits, page table accesses, and context switching.
We measure the smoothness improvements of the above

optimizations respectively. Figure 6 shows the results. First,
when GPU acceleration is applied, the smoothness is greatly
increased by nearly 2×. After VirtIO is adopted and VT is
enabled, the eventual average smoothness of AOVB-EMU
reaches 0.76 (acceptable) on all PCs and 0.57 (frequent stagna-
tion) on low-end PCs. Both values (0.76 and 0.57) are lower
than the frequent level (≥ 0.8) and the satisfactory level
(≥ 0.9). In comparison, when we run heavy Android 3D
games on Linux PCs with Android-x86 installed (referred
to as “Native” in Figure 6 since VirtualBox is not needed),
the average smoothness is 0.95 on all the experimented PCs
and 0.89 on low-end PCs. In summary, even with the in-
tegration of all the optimizations, we still fail to make full
virtualization based solution achieve desired smoothness
in supporting heavy games. This drives our exploration in
direct Android emulation and DAOW.

4 DAOW: DESIGN & IMPLEMENTATION

DAOW embodies the idea of direct Android emulation on

Windows. To achieve this, we address significant differences
at the levels of OS (Android/Linux vs.Windows), architecture
(ARM vs. x86), and device (mobile devices vs. PCs). Figure 1
depicts all the building blocks of DAOW. In this section,
based on static and dynamic profiling of a wide variety of
Android games, we design and implement the key enabling
mechanism(s) of each building block, in particular how they
address the aforementioned multi-level differences effectively
and efficiently.

4.1 Profiling Android Games

Similar as other Android apps, a game app mainly consists
of four types of files in the APK: a platform-independent
Dalvik executable (.dex), native ARM libraries (.so) and
occasionally x86 libraries (for portability onto x86-based
mobile devices), manifests, and resources. As exemplified
in Figure 8, Vainglory.apk (a popular 3D game on mobile
platform only) contains a dex file (6.6 MB) which can be exe-
cuted by a Dalvik JVM, native libraries libGameKindred.so
(24 MB) and libfmod.so (1.6 MB) for ARM-v7 platforms,
a manifest file (0.5 MB) specifying the app’s metadata, and
a variety of resource files (1 GB) including images, audio,
videos, and 3Dmodels. Since there are no native x86 libraries,
this game cannot run on x86 platforms without translation.
The two native libraries are loaded into memory and

bridged to Java bytecode through the Java Native Interface
(JNI) at runtime. libGameKindred relies on other shared li-
braries such as libfmod for audio processing and libGLESv2
for graphic processing. The Java bytecode dispatches An-
droid events into native libraries to convey user operations.
Native libraries interact with the kernel though Application
Binary Interface (ABI) to maintain the game loop.
Static profiling. AOVB-EMU and DAOW systems are as-
sociated with a major Android game market (abbreviated as

Market-G [40]) that hosts nearly 500,000 games. To under-
stand the static characteristics of Android games, especially
the native libraries and instructions, we scan the binaries
(included in the native libraries and/or Java bytecode) of each
game app and obtain the following key findings:
• 98.2% games uses native libraries to improve efficiency.Games

that do not use native libraries are mostlyWord and Puzzle
games that are insensitive to execution speed. We observe
that a mobile game uses seven native libraries on average
(varying among games) . Therefore, to support Android
games on PCs, we would need an Android environment
(e.g., Android-x86) to execute Android’s native libraries.

• Native x86 libraries are not often provided. All the games
provide native ARM libraries while only 27.4% provide
native x86 libraries. Therefore, to support ARM-based
Android games on x86 PCs, we have to translate ARM
instructions to x86 instructions using Intel Houdini [4].

• Among all (∼800) types of existing x86 instructions [24], only

30% are actually used by games.Hence, at most 240 types of
instructions may need rewriting for binary compatibility.

Dynamic profiling . Among the 500,000 games hosted in
Market-G, the top 40,000 receive almost all (>99.9%) of the
popularity in a certain period of time (e.g., one year). Thus,
to unravel the general characteristics of Android games at
runtime, we study the top-40K games by collecting their
execution traces from around 1/5 of AOVB-EMU clients (all
of which belong to volunteer users with informed consent)
during Jan. 2017. The traces were limited to one month of
measurements, and are fully decoupled from any user identi-
fiers or personally identifiable information. From the traces
we have the following key observations:
• All system calls are not created equal. Counting all the 40K

games, only 200 (out of 370+ in total) syscalls are invoked
at least once at the runtime. The most frequently invoked
syscalls are gettimeofday, read, write, futex, and so
forth. This allows us to prioritize supporting the popular
syscalls and treat the rarely used syscalls as exceptions.

• Games do not use all the system services. Nearly 1/3 of
Android services are never accessed by games, e.g., in the
Android-x86 version 4.4.4 used by AOVB-EMU, 32 out of
102 services are never accessed (refer to §4.2 for the details).
This enables us to customize the vanilla Android-x86 to be
lightweight yet still adequate for running Android games.

• Rendering instructions are the major overhead. The main
computation of running an Android game comes from
the invocation of OpenGL rendering instructions to dis-
play each graphic frame. As shown in Figure 9, there is a
clear boundary between heavy 3D games (e.g., FPS, Racing,
Sports, RPG and ACT) and simple 3D games (e.g., Card,
Puzzle and Word). On average, the former invoke 2000+

FPS Racing Sports RPG ACT Card Puzzle Word

2K

4K

6K

O
p

en
G

L
E

S
In

st
ru

ct
io

ns

using error bar of STD

OpenGL instructions per frame

CPU cycles per frame

30M

60M

90M

C
P

U
C

yc
le

s

Figure 9: Different genres of 3DAndroid games invoke

significantly different numbers of OpenGL rendering

instructions to display a graphic frame. Meanwhile,

their used CPU cycles per frame are tightly relevant.

rendering instructions per frame while the latter invoke
1000-.

4.2 Android-x86 Customization

As discussed in §4.1, in the original full-fledged Android-x86
version 4.4.4 system we employ, nearly 1/3 (32 out of 102)
of Android services are never accessed by Android games.
Services such as printing, NFC, and infrared (sensors[50, 55])
are often used by non-game apps rather than game apps, and
thus can be removed. Moreover, the built-in Linux kernel of
Android-x86 is removed since its role is taken over by our
developed DAOW Kernel Driver.

Apart from the 32 unused services, 11 other services (e.g.,
Bluetooth, WiFi, smartphone battery, and vibrator) are neu-
tralized by their hardware or software alternatives in PCs.
In detail, three kinds of neutralizations are implemented in
DAOW. First, since WiFi and Bluetooth hardware modules
are commonly seen in almost all of today’s PCs, they are
reused to serve the Android games run in DAOW with cer-
tain limitations (e.g., the Android games are not allowed to
configure or control the two hardware modules). Second, for
a desktop PC which does not have a battery, we simulate the
battery charging state. Third, because vibrators are rarely
used by PCs, we programmatically shake the emulated dis-
play window of an Android game to mimic the required
vibrations.

Besides removing and neutralizing 43 services, we enhance
the performance of several services in Android-x86 that are
tightly related to users’ gaming experiences, such as input,
audio, and graphics services. The enhancements are imple-
mented in Media Host and the details will be presented in
§4.7. Note that the enhancements should not incur additional
native binaries and Linux syscalls. With all above efforts, the
runtime memory footprint of Android-x86 is considerably
reduced from 1.2 GB to 700 MB.

4.3 Rewriting Binaries on Loading

DAOW Emulator uses init to load the customized Android-
x86. During the loading, the instructions of Android-x86 have
to be rewritten for compatibility since Android-x86 is based
on the Linux kernel but the instructions will be executed on
Windows. Besides, when an app uses native x86 libraries,
the included x86 instructions also need rewriting. Specially,
rewrite-on-load deals with two types of distinctions between
Linux and Windows: 1) different data structures, such as
the binary format and process layout; 2) different runtime
behavior, such as the syscalls and register usages.

The rewriting takes three steps as illustrated in Figure 10:
1) capturing instruction-level incompatibility “patterns,” 2)
transmuting instructions using trampolines, and c) support-
ing the functionality of instructions by composing native
Windows utility functions. One key design decision is to
generate Windows-compatible instructions with minimum
changes in the binary structures. Otherwise, excessive dis-
assembling and reconstructing operations are required to
insert rewritten instructions into the original binary, which
would substantially increase the rewriting overhead and com-
plicate the implementation. Currently, rewriting a 30-MB
Android-x86 binary requires less than 120 µs on an average
Windows PC, and the total rewriting time of the 67 Android-
x86 services (containing 155 binaries) is less than 580ms .

As discussed in §4.1, there are less than 240 types of x86
instructions actually used by Android game apps. After care-
fully examining these instructions, we find only half of them
need rewriting for binary compatibility; more importantly,
multiple types of instructions can be rewritten with one
pattern while some type of instructions has to be rewrit-
ten with several patterns. In the end, DAOW captures ten
instruction-level incompatibility patterns. Among these pat-
terns, two patterns occur the most frequently: the int 0x80
interruptions, and the usage of particular segment registers.
The first pattern (Pattern A in Figure 10, which profiles

the invocation of the $number-th syscall) stems from the
fact that Android-x86 often uses int 0x80 to make syscalls
while Windows programs use int 0x21 or sysenter. When
it is captured, the incompatible instructions are rewritten
by using the dynamically-generated in-situ Trampoline A. In
detail, this fixed-size (typically 5 byte) trampoline is used to
keep the original structure of the corresponding Android-x86
binary. Then, Trampoline A passes the execution flow to the
corresponding “helper” function for realizing the $number-th
syscall. This nativeWindows utility function adjusts the data
organization, and makes the corresponding Linux syscall to
DAOW Kernel Driver. The control is transferred back to
Android-x86 code once the syscall is complete.

The second pattern (Pattern B in Figure 10) uses two “un-
defined” segment registers gs and fs [24]. 32-bit Linux x86

call sys_helper

sys_helper

Data organization adjust

Linux syscall invocation

gs_helper

gs emulation in memory

mov eax, gs_address[offset]

rewrite

rewrite

call
Trampoline A

Loading

flow
Execution

 flow

call

unmodifiedunmodified

call gs_helper

Trampoline B

mov eax, gs[offset]

Pattern B

mov eax,$number
int $0x80

Pattern A

Linux binary Windows binary Native functions

Figure 10: Rewriting Android-x86 binaries on loading

(them into memory) by capturing incompatibility pat-

terns, leveraging trampolines, and composing native

Windows utility functions as effective “helpers.”

binaries use gs to access the thread-local storage (TLS) while
Windows x86 binaries use fs for a similar purpose; however,
when rewriting Linux binaries we cannot simply replace a
gs in Linux with an fs in 64-bit Windows, because gs and
fs are not accessible for user-space processes in 64-bit Win-
dows. As a result, Trampoline B is employed to call the gs
helper function, which first emulates the gs in memory and
then moves the desired data pointed by the gs to eax.

4.4 Dynamic Binary Translation

As we observe in §4.1, all Android games provide ARM li-
braries while only 27.4% provide a complete set of corre-
sponding x86 libraries. As a consequence, when running An-
droid games on Windows PCs (almost all of which are using
x86 CPUs), in most cases we have to dynamically translate
ARM instructions to x86 instructions. We use Intel Houdini
to do the translation as it has the best performance (i.e., the
translation only incurs ∼30% performance degradation ac-
cording to our observations) and compatibility compared
to the others [8, 21, 37]. Houdini provides a set of Linux
x86 executables and auxiliary Android ARM libraries (such
as libc.so and libGLESv2.so). To incorporate the func-
tionality of Houdini, we modify the built-in Dalvik VM of
Android-x86 to make it go through Houdini. Thereby, when
the Dalvik VM detects native ARM libraries in an Android
app instance, it invokes corresponding Houdini functions to
load and translate target ARM instructions.

4.5 Emulating Linux Syscalls

DAOW Kernel Driver is responsible for emulating Linux
syscalls on Windows. We find that it is inefficient to em-
ulate each syscall independently[28], because syscalls use
shared kernel resources. Therefore, we make great efforts
to inspect and exploit the common divisors among these
syscalls, especially for syscalls with highly related functions.

Windows Kernel

VFS tree

inode2

DAOW Kernel Driver

Memory
64K aligned

/proc/meminfo
/proc/cpuinfo

/sdcard/file
/system/bin/ls

hashed

into buckets

inode1

 ...Memory pool

getppid

read

mmap2

Read-only
system image

getProcess

mapMemory

getCPUInfo
(with cache)

EXT4 interfaces

 on NTFS/FAT32

Linux process list QuerySystemInfomation

MapViewOfSection

WriteFile, ReadFile, ...

Filesystem

inode1

inode table

readFile inode table

delayed

flush

pre-allocation + delayed release

Figure 11: Efficiently emulating Linux syscalls inDAOWKernel Driver by exploiting the common divisors among

the syscalls and a common set of utilities, as well as early preparation and delayed execution.

As discussed in §4.1, the 40K Android games use less than
200 Linux syscalls (out of 370+) at runtime. This indicates
that for directly emulating Android games on Windows,
we can de-prioritize the support for 170+ Linux syscalls
that are rarely used. In fact, the current DAOW Kernel Dri-
ver supports 218 Linux syscalls, including the less than 200
syscalls actually used by Android games and the additional
18+ syscalls used for debugging/logging. For the remaining
ones, in case they are invoked (the occurrence is smaller
than 0.007% for daily active instances), DAOW returns the
LINUX_ENOSYS (i.e., function not implemented) exception
to the game app, and then watches whether the exception
will cause essential problems to the game app. By customiz-
ing the Android-x86 SystemServer, once an app hangs or
crashes after an unimplemented syscall is invoked, the excep-
tion message will be automatically reported to us. According
to our collected reports, crashes and hangs happen with a
probability of 24%. Therefore, the eventual occurrence of
essential problems caused by unimplemented syscalls is neg-
ligible (0.007% × 24% = 0.002%), and we can always support
more syscalls if really needed.
We classify the supported 218 Linux syscalls into eight

groups: process, file, filesystem, memory, IPC, system, net-
work, and user. Different groups have different design for the
emulation, while share a common set of DAOW syscalls (i.e.,
the “common divisors”) and utilities. Some DAOW syscalls
can be directly executed inside the Kernel Driver while other
DAOW syscalls have to be translated into Windows syscalls.
Below we describe our emulation principles and insights us-
ing a typical example where three Linux syscalls (getppid,
read, and mmap2) are emulated in DAOW Kernel Driver.

As shown in Figure 11, the first Linux syscall getppid
means to return the process ID of the parent of a calling
process. Although it is possible to query the Windows kernel
for the parent process’s ID, the result may not comply with
Linux specifications. Hence, we emulate getppid by com-
posing the DAOW syscall getProcess and maintaining a
Linux process list. With these efforts, we can return a correct
result without employing any Windows syscalls.

The second Linux syscall read retrieves not only regular
files but also pseudo files maintained by the kernel, such as
the system information files under /proc. For the former
(reading a regular file), DAOW Kernel Driver has to deal
with the differences between Linux and Windows in naming
restrictions and file attributes. More specifically, we need
to emulate EXT4 interfaces on NTFS/FAT32 (abbreviated as
“EXT4Windows”), which treat read-only and writable files
differently. For the sake of efficiency, read-only files (e.g.,
/system/bin/ls) are pre-packed into a binary image with
inner files aligned in 4K blocks, and frequently-used real-
only files are cached in batch. On the other side, writable
files are named by the inode number; the inode table is fre-
quently queried and synchronously updated in memory, but
asynchronously flushed to the disk (or says “delayed flush”).
For the latter (e.g., reading a pseudo file /proc/cpuinfo), the
CPU information is pre-queried from the Windows kernel
and cached early when DAOW Kernel Driver starts up.
The third Linux syscall mmap2 is mainly responsible for

allocating memory or mapping files into memory. When it
is emulated on Windows, an instant obstacle lies in the dis-
tinct memory alignment granularities between Linux (4K)

and Windows (64K). To address this, a simple but space-
consumingmethod is handling everymemory-related syscalls
with the 64K alignment; in contrast, our devised DAOW
syscall mapMemory maintains a memory pool to resolve such
inconsistency coupled with early allocation and delayed re-
lease. If the required memory block can be satisfied by the
memory pool, a memory block is immediately returned to
the user application without disturbing the Windows kernel.
Otherwise, mapMemory has to be translated to corresponding
Windows syscalls. A larger memory block will be allocated
and the required memory block will be returned; the remain-
der is put into the memory pool for later use.

4.6 Security Defenses

As DAOW does not use full virtualization, it has to take care
security concerns due to weaker resource isolation [14, 54].
First, DAOW must prevent malicious Android apps from
attacking Windows programs. In our experiences, we have
never observedAndroid apps’ attackingWindows programs—
even malicious Android apps do not have the motivations
to attack Windows PCs. Still, DAOW prevent users from
running any malicious apps. This is achieved by checking
apps’ fingerprints (i.e., its MD5 hash code) when loading
apps from the APKs, with the help of Market-G (refer to
§4.1) which hosts almost all the popular and official Android
games and provides their security labels. If an app fails to
pass the checking, DAOW will explicitly notify the users of
the potential risk.
Second, DAOW has to prevent Windows-based malware

from attacking Android apps. Such attacks, in practice, are
observed2 and have a clear motivation—cheating in gaming.
To address this, we build a series of security defenses to
prevent external cheating programs (e.g., aimbot and speed
hack on Windows) from modifying Android game app in-
stances. Specifically, we notice that most cheating programs
are granted with user privileges, and only a few of them
possess kernel privileges. Cheating programs with only user-
level privileges can be easily defended. Since the DAOW
Kernel Driver works in the kernel mode, it can easily detect
and then block the cheating programs’ access/tampering
attempts on Android game app instances.

If cheating programs also work in the kernel mode,DAOW
is able to detect most of them, but not all. When a kernel-
mode cheating program is known to the community and
we have understood its key characteristics or fingerprint,
DAOW can detect it by leveraging such features. Nonethe-
less, DAOW is not able to directly prevent it from accessing
or tampering Android game app instances. Instead, when
such an attack is detected, DAOW would explicitly prompt a

2Such attacks happen thousands of times per day according to our statistics.

Esc

Crtl A lt A lt Ctrl

1

!

2

@

3

#

4

$

5

%

6

^

7

&

8

*

9

(

0

)

`

~

Q W E R T Z U I O P

A S D F G H J K L

Z Y X C V B N M

;

:

_

, .

-

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Prt ScrScrollLockPauseBreak

HomeInsert

EndDelete

PageUp

PageDown

1 2

4 5

7 8

/NumLock

Ins

0

Shift

CapsLock

Tab

=

+ Backspace

{

[

}

]

|

\

"

'

/

?><

E nter

W
A D

S

open/close

get on/off

FTab R

Figure 12: Context-aware key mapping for an FPS

game. Mobile phones’ on-screen buttons are dynam-

ically detected and mapped onto easy-to-reach PC

keys, and the “Attack” button is mapped to left-click

of the mouse. Dashed buttons are temporarily dis-

abled in the specific context.

window to notify the user and ask the user to block the cheat-
ing program. If the user is unwilling to block the cheating pro-
gram (implying that the user is likely to be a cheater/attacker),
DAOW would shut down itself and report the situation to
our security center. After manual checking, our security cen-
ter may either warn the user or ban the user from running
DAOW.

4.7 Gaming Support

We build two gaming support—context-aware key mapping
and progressive anti-aliasing—to fill the interaction gaps
between mobile devices and PC platforms.
Context-aware keymapping. When users play Android
games on mobile devices, on-screen finger touch is the major
user input method; in contrast, almost all PC games use stan-
dard keyboards and mouses as the input. To bridge this gap,
a simple and widely used solution is to statically map every
possible button or gesture to a fixed key. If the number of
possible buttons and gestures is small (typically < 20), this
solution works fine. Otherwise, hard-to-reach “cold” keys
have to be employed, thus impairing users’ gaming experi-
ence. The essential drawback of static mapping lies in that it
cannot capture the dynamics of button configurations under
different contexts (game scenarios). As shown in Figure 12,
round buttons are fixed while square buttons change their
locations and visibility with the context.

In order to improve users’ gaming experience, DAOW em-
ploys a context-aware key mapping method. When loading
a game, DAOW recognizes the textures of all predefined
buttons, which are then used to track them on the screen.
During the gaming process, we capture on-screen buttons
and their positions by inspecting the OpenGL drawing in-
structions. Using the inspection results, we dynamically map
each on-screen button to an available key based on heuristic
rules and manifests. As demonstrated in Figure 12, the map-
ping prefers the keys in the vicinity of the four direction keys
“W, A, S, D”, such as “F, R, Q, E” and “Tab”, so as to make the

Off-screen
Framebuffer
(1080p)

Off-screen
Framebuffer
(720p)

Game painted
framebuffer

FXAA

Emulated
display
1080p

Final
framebuffer

Off-screen framebuffer size alignment

MSAA

enlarge

Cause of aliasing

Off-screen
Framebuffer
(720p)

1080p

draw

modify parameters
In initialization

 postprocess

(a) (b)

(b)

(c)

(d)

modify OpenGL ES instructions

Figure 13: The cause of aliasing in graphics and our

utilized three anti-aliasing techniques.

buttons easier for users to reach. When the context changes,
the mapping will also change to reuse available keys and
resolve possible conflicts, so that only a few easy-to-reach
“hot” keys are needed in most cases. In general, our method
brings negligible overhead to graphics rendering but great
convenience to PC users.
Progressive Anti-Aliasing. The screens of PCs are much
larger than those of mobile devices, which could exaggerate
the subtle, unnoticeable rendering problems of mobile games
to a noticeable extent. Thus, when emulating mobile games
on PCs we need to make various graphic adaptations. Among
all graphics problems, aliasing is the most commonly seen
and can oftenmake users feel uncomfortable. As illustrated in
Figure 13, the root cause of aliasing lies in the up-conversion
from an inadequate-sized off-screen framebuffer to a large
emulated screen (i.e., from 720p to 1080p). In comparison,
although aliasing also happens on mobile devices with 1080p
screens, the relatively small screen size (implyingmore pixels
per inch than PC display) makes it less noticeable to users.

Fundamentally solving the aliasing problem requires source
code-level modification to Android games, which is obvi-
ously impossible for a general-purpose emulator like DAOW.
Hence, we adopt a transparent anti-aliasing method which
detects the aliasing phenomenon by constantly checking
the size and smoothness of the off-screen framebuffer. If
the smoothness is not affected, we would progressively ap-
ply three existing anti-aliasing techniques by rewriting or
adding OpenGL instructions at runtime [20, 23]. First, we at-
tempt to apply off-screen framebuffer size alignment since it

High-End

19.35

Medium-End

48.81

Low-End
31.84

Figure 14: Distribution of involved users’ PCs.

can usually make the greatest improvement. This technique,
however, is not compatible to all games. Thus, our second
choice is multi-sample anti-aliasing (MSAA [26]), which can
make effective improvement with moderate GPU overhead
and is compatible to most games. Finally, we apply fast ap-
proximate anti-aliasing (FXAA [30]) which has some basic
effect with minor overhead and is compatible to all games.
Otherwise (if the smoothness is affected), we do not apply
anti-aliasing techniques to preserve the smoothness.

5 EVALUATION

This section evaluates the major performance and overhead
of DAOW for emulating heavy Android games, in compari-
son toAOVB-EMU, using extensive real-world data collected
from our users and micro-benchmark results of various key
operations in the emulation. We also compare the perfor-
mance of Bluestacks with black-box benchmark results.

5.1 Methodology

To practically evaluate the effectiveness of direct Android em-
ulation on Windows, we collect DAOW users’ performance
and overhead reports every time they run an Android game
(as long as they are connected to the Internet), as well as
their PC hardware configurations (shown in Figure 14). The
performance includes fine-grained running smoothness in
each second (refer to §3.1) and the startup time of an Android
game. The overhead includes the average memory, CPU and
GPU usages during a whole running process of an Android
game, as well as the app coverage. As a comparison, we also
collectAOVB-EMU users’ reports in the samemanner during
the same period of time for a fair comparison. All the reports
are collected with informed consent of opt-in users, and are
fully decoupled from personally identifiable information.
Since its launch in Sep. 2017, DAOW has been used by

50M+ users to run ∼30K Android games, among which ∼8K
are heavy 3D games. In comparison, since its launch in Dec.
2015, AOVB-EMU has been used by over 30M users to run

0.2 0.4 0.6 0.8 1.0
Smoothness

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

AOVB-EMU on Low-End PCs

AOVB-EMU

DAOW on Low-End PCs

DAOW

Figure 15: Running smoothness of

DAOW and AOVB-EMU.

20 40 60
Startup time (second)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DAOW

AOVB-EMU

Figure 16: Android games’ startup

time on DAOW and AOVB-EMU.

Mem usage CPU usage GPU usage
0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e

1.26 GB
1.62 GB

using error bar of STD

DAOW

AOVB-EMU

Figure 17: Avgmemory, CPU, andGPU

usages of DAOW and AOVB-EMU.

40K+ Android games, which fully cover the 8K heavy 3D
games. Because our research targets the emulation of heavy
3D games, below we focus on the collected results with re-
gard to heavy 3D games from both systems.

As for Bluestacks, another mainstream AOVB-based emu-
lator owning 250M+ users [35], we are unable to collect its
user data at scale. Also, since we are unable to reverse engi-
neer its client, we resort to small-scale black-box benchmarks
to approximately evaluate the performance of Bluestacks.

5.2 User-Reported Results

Running smoothness. Figure 15 profiles the running
smoothness of both systems on all PCs and low-end PCs,
respectively. In general, we observe that DAOW achieves
satisfactory (≥ 0.9) smoothness in 60% cases and fluent
(≥ 0.8) smoothness in 90% cases. The average smoothness
reaches 0.918 and the median is as high as 0.923. In compari-
son, AOVB-EMU only achieves satisfactory smoothness in
20% cases and fluent smoothness in 50% cases. The average
smoothness is 0.76 and the median is 0.79, implying that most
users cannot smoothly play heavy games with AOVB-EMU.

When heavy games are emulated on low-end PCs, DAOW
can achieve an average smoothness of 0.83 (not satisfactory
but still fluent), while the average smoothness of AOVB-
EMU sharply falls to 0.57, meaning that users have to suffer
from frequent stagnations. On the other hand, better hard-
ware can compensate the overhead of full virtualization to a
certain extent: 20% of AOVB-EMU users experience a high
smoothness (> 0.9) when running heavy games, and the vast
majority of them actually possess high-end PCs. In general,
compared to AOVB with manifold optimizations (refer to
§3.3), direct Android emulation on Windows essentially im-
proves the smoothness by an average of 21% (from 0.76 to
0.918).
Game startup time. Figure 16 quantifies the startup time
of heavy 3D games. We find that both systems can always

start up a game within one minute, which is basically accept-
able to users. On average, the startup time is 13 seconds with
DAOW and 25 seconds with AOVB-EMU, thus achieving an
obvious (48%) decrease. This is mainly owing to our adequate
utilization of shared memory and memory pool, as well as
our efficient emulation of Linux syscalls on Windows.
Memory, CPU, and GPU usages. As depicted in Fig-
ure 17, the average memory usage of DAOW (1.26 GB) is
22% smaller than that of AOVB-EMU (1.62 GB). This is be-
cause DAOW takes advantage of Windows file mappings
and caches to enable fine-grained memory allocation (exem-
plified in §4.5); in contrast, the separated and complete Linux
kernel in AOVB-EMU consumes more memory and often
does not return the allocated memory to Windows in time
(owing to full virtualization).

On the other hand, we notice that both the CPU and GPU
usages of DAOW are higher than those of AOVB-EMU (by
8% for CPU and 34% for GPU). This is the result of DAOW’s
abandoning full virtualization and having direct access to a
PC’s hardware—more adequate utilizations of the CPU and
GPU bring essentially higher smoothness.
App coverage. Thanks to its using the full-fledged environ-
ment of Android-x86 and VirtualBox’s full virtualization (§3),
AOVB-EMU supports 95% of Android games. For the unsup-
ported games, 26% of them intentionally preventAOVB-EMU
from running them in emulation [46]; 22% are ascribed to
technical bugs in Houdini’s dynamic binary translation and
Android-x86; and the remaining 52% are banned by the game
developers through Market-G due to the fairness concerns
when they are played with PC keyboards, mouses (rather
than finger touches) or emulated sensors such as GPS.

In comparison, although DAOW essentially improves the
smoothness, it slightly decreases the app coverage from 95%
to 92%. This limitation is mainly attributed to two reasons.
First, rarely-used incompatible CPU instructions are not com-
pletely handled by our rewriting (§4.3) and dynamic transla-
tion (§4.4). Specially, some instructions are not handled for
security concerns to ensure the stability ofWindows. Second,

Syscall Pthread
create/join

Context
switch

Mutex Binder Linpack Memory
copy

Rendering
pipeline

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e

using error bar of STD

AOVB-EMU w/ VT

AOVB-EMU w/o VT

DAOW

Native

Figure 18: Micro-benchmark results of various key operations in

AOVB-EMU, DAOW, and native Android-x86.

AOVB-EMU Bluestacks DAOW
0.0

0.2

0.4

0.6

0.8

1.0

S
m

o
ot

hn
es

s

using error bar of STDw/ VT

w/o VT

Figure 19: Avg smoothness of AOVB-

EMU, Bluestacks, and DAOW.

as mentioned in §4.5, we are not emulating all Linux syscalls
inDAOW Kernel Driver to avoid cost-inefficient engineering
efforts. In a nutshell, we trade little decrease of compatibility
for large increase of smoothness in developing DAOW3.

5.3 Micro-Benchmark Results

We conduct a series of micro-benchmarks with AOVB-EMU
(with or without VT),DAOW, and native Android-x86 execu-
tion (abbreviated as Native), on a common PC with a 4-core
Intel i5-3470 CPU@3.2GHz, an integrated graphics card, and
4-GB DDR3 RAM. As shown in Figure 18, for each bench-
mark, we divide the execution time by that of AOVB-EMU
with VT for normalization.

First, we examine the execution time of all the syscalls
invoked during a play of Vainglory (a typical heavy 3D game).
Due to our special design of DAOWKernel Driver, the overall
syscall time of DAOW is 32% shorter than AOVB-EMU with
VTwhile 9% longer than Native. This is a fundamental reason
why the performance of DAOW is essentially better than
that of AOVB-EMU while close to that of Native.

Second, we perform other kernel-space benchmarks such
as threading (Pthread), context switch, synchronization (Mu-
tex), and interprocess communication (Binder). For Pthread
creat/join and context switch, DAOW reduces 60% and 80%
execution time compared to AOVB-EMU with VT, respec-
tively. In essence, a heavy Android game typically creates
hundreds of threads and maintains 20+ active threads; they
are scheduled on the 4 CPU cores, incurring ∼10000 context
switches per second. Therefore, intensive threading brings
much more overhead to AOVB-EMU as explained in §3.2.
When it comes to Mutex and Binder (which is responsible
for interprocess communication between Android services
and app instances), DAOW reduces 14% and 49% execution
time compared to AOVB-EMU with VT, respectively.
Third, we run user-space benchmarks such as Linpack

(Linear system package [16]) and memory copying with 4
3It is worth noting that DAOW respects the terms of service of Android
apps by not attempting to hide its identity as an emulator. In fact, DAOW
shares the same Android emulator fingerprints with AOVB-EMU, which
are easy to identify for all Android apps.

cores. For Linpack, DAOW performs only 10% faster than
AOVB-EMU with VT. In contrast, AOVB-EMU without VT
costs 3× more execution time since it can only provide one
core for the guest Android system. For the same reason,
AOVB-EMU without VT needs more time for memory copy-
ing.
Fourth, we measure the rendering pipeline latency (be-

tween the app instance and the graphics driver) which is
crucial to graphics processing. Compared to AOVB-EMU
with VT, DAOW greatly reduces the latency by 85%, mostly
owing to the usage of shared memory for direct bulk data
transfer.
Comparison with Bluestacks. Using the same PC men-
tioned above, we evaluate the performance and overhead
of Bluestacks (version 3.56) by manually playing 50 typi-
cal heavy 3D games and calculating the smoothness and
game startup time. As shown in Figure 19, the smoothness of
Bluestacks is slightly higher than that of AOVB-EMU while
essentially lower than that of DAOW. Likewise, the aver-
age game startup time of Bluestacks (19 seconds) is shorter
than that of AOVB-EMU while longer than that of DAOW.
In contrast, the average memory usage of Bluestacks (1.86
GB) is larger than that of AOVB-EMU or DAOW. In gen-
eral, Bluestacks resembles AOVB-EMU in terms of major
performance.

6 CONCLUSION

Efficiently emulating heavy Android games onWindows PCs
has long been desired, and it is highly challenging. In this
paper, we introduce and discuss our design and implementa-
tion of DAOW, a widely-adopted direct Android emulation
system on Windows x86 PCs. Instead of full virtualization
in the cost of the complexity of development, DAOW makes
considerate tradeoffs among efficiency, overhead, and com-
patibility. Real-world user reports solidly confirm the efficacy
of DAOW. All in all, our work proves the practical feasibil-
ity of efficient cross-OS program execution even for a large
number of heavy mobile applications.

The idea of direct Android emulation on Windows is also
applicable to non-game apps. As a matter of fact, we have
observed a few users’ running heavy non-game apps with
DAOW, indicating that the demand does exist. Although we
currently prioritize supporting game apps, our methodology
can be extended to other types of mobile apps in principle,
of course with more engineering efforts.

ACKNOWLEDGEMENTS

Wewould like to thank the anonymous reviewers for their in-
sightful comments, and our shepherd for guiding us through
the revision process. Also, we appreciate the valuable sug-
gestions from Pengyu Zhang, Jia Rao, and Rui Zhou. This
work is supported in part by the National Key R&D Program
of China under grant 2018YFB1004702, the National Natural
Science Foundation of China (NSFC) under grants 61822205,
61632013, 61632020, 61432002 and 61471217.

REFERENCES

[1] AMD.Com. 2018. AMD-V Technology for Client Virtualization. https:
//www.amd.com/en/technologies/virtualization.

[2] Ardalan Amiri Sani, Kevin Boos, Shaopu Qin, and Lin Zhong. 2014.
I/O Paravirtualization at the Device File Boundary. In Proceedings of

ACM ASPLOS. 319–332.
[3] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014.

Rio: A System Solution for Sharing I/O Between Mobile Systems. In
Proceedings of ACM MobiSys. 259–272.

[4] Android-X86.Org. 2016. Android-x86 Vendor Intel Houdini. https:
//osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/.

[5] Android-X86.Org. 2018. Android-x86 - Porting Android to x86. http:
//www.android-x86.org/.

[6] Jeremy Andrus, Alexander Van’t Hof, Naser AlDuaij, Christoffer Dall,
Nicolas Viennot, and Jason Nieh. 2014. Cider: Native Execution of iOS
Apps on Android. In Proceedings of ACM ASPLOS. 367–382.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of ACM SOSP. 164–177.

[8] F. Bellard. 2016. QEMU, A Fast and Portable Dynamic Translator. In
Proceedings of USENIX ATC. 41–46.

[9] BigNox.Com. 2018. Nox Android Emulator. https://www.bignox.com/.
[10] BlueStacks.Com. 2018. BlueStacks 3 Android Emulator.

https://www.bluestacks.com/bluestacksgaming-platform-bgp-
android-emulator.html.

[11] Amy Chen. 2017. Amy Chen, General Manager of BlueStacks China:
Ingenuity of the $100 Billion Market. https://www.facebook.com/
bluestacksTW/posts/367309563685501.

[12] Riad Chikhani. 2015. The History of Gaming. https://techcrunch.com/
2015/10/31/the-history-of-gaming-an-evolving-community/.

[13] Chromium.Org. 2018. Chrome OS Supporting Android Apps.
https://www.chromium.org/chromium-os/chrome-os-systems-
supporting-android-apps.

[14] Xingmin Cui, Da Yu, Patrick Chan, Lucas CK Hui, Siu-Ming Yiu, and
Sihan Qing. 2014. Cochecker: Detecting Capability and Sensitive Data
Leaks from Component Chains in Android. In Proceedings of Springer

Australasian Conference on Information Security and Privacy. 446–453.
[15] Christoffer Dall, Jeremy Andrus, Alexander Van’t Hof, Oren Laadan,

and Jason Nieh. 2012. The Design, Implementation, and Evaluation

of Cells: A Virtual Smartphone Architecture. ACM Transactions on

Computer Systems 30, 3 (2012), 9:1–9:31.
[16] Jack Dongarra. 2007. Frequently Asked Questions on the Linpack

Benchmark. http://www.netlib.org/utk/people/JackDongarra/faq-
linpack.html.

[17] FutureMark.Com. 2010. 3DMark 11 Whitepaper. http://s3.amazonaws.
com/download-aws.futuremark.com/3DMark_11_Whitepaper.pdf.

[18] Genymotion.Com. 2018. Genymotion Android Emulator. https:
//www.genymotion.com/.

[19] María Gómez, Romain Rouvoy, Bram Adams, and Lionel Seinturier.
2016. Mining Test Repositories for Automatic Detection of UI Perfor-
mance Regressions in Android Apps. In Proceedings of ACM Mining

Software Repositories Conference. 13–24.
[20] Songtao He, Yunxin Liu, and Hucheng Zhou. 2015. Optimizing Smart-

phone Power Consumption Through Dynamic Resolution Scaling. In
Proceedings of ACM MobiCom. 27–39.

[21] Ding-Yong Hong, Jan-JanWu, Pen-Chung Yew,Wei-Chung Hsu, Chun-
Chen Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
2014. Efficient and Retargetable Dynamic Binary Translation on Mul-
ticores. IEEE Transactions on Parallel and Distributed Systems 25, 3
(2014), 622–632.

[22] Jon Howell, Bryan Parno, and John R. Douceur. 2013. How to Run
POSIX Apps in a Minimal Picoprocess. In Proceedings of USENIX ATC.
321–332.

[23] Chanyou Hwang, Saumay Pushp, Changyoung Koh, Jungpil Yoon,
Yunxin Liu, Seungpyo Choi, and Junehwa Song. 2017. RAVEN:
Perception-aware Optimization of Power Consumption for Mobile
Games. In Proceedings of ACM MobiCom. 422–434.

[24] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual.
Intel.

[25] Jide.Com. 2018. Remix OS. http://www.jide.com/remixos.
[26] Khronos.Org. 2018. Multisample anti-aliasing. https://www.khronos.

org/opengl/wiki/Multisampling.
[27] Koplayer.Com. 2018. Koplayer Android Emulator. http://www.

koplayer.com/.
[28] Robert LiKamWa and Lin Zhong. 2015. Starfish: Efficient Concurrency

Support for Computer Vision Applications. In Proceedings of ACM

MobiSys. 213–226.
[29] LinxTestProject. 2018. LTP - Linux Test Project. http://linux-test-

project.github.io/.
[30] Timothy Lottes. 2011. FXAA: Fast Approximate Anti-Aliasing. NVIDIA

white paper (2011).
[31] Memuplay.Com. 2018. MEmu Android Emulator. http://www.

memuplay.com/.
[32] Microsoft.Com. 2016. Windows Subsystem for Linux.

https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-
subsystem-for-linux-overview/.

[33] Microsoft.Com. 2018. WSL LTP result. https://github.com/
MicrosoftDocs/WSL/tree/live/LTP_Results/16273.

[34] George Osborn. 2016. The Big Screen Opportunity in South-
east Asia. https://newzoo.com/insights/articles/the-big-screen-
opportunity-in-southeast-asia/.

[35] Prweb.Com. 2018. BlueStacks Releases the First Android Gaming
Platform Ever to Run Android N. https://www.prweb.com/releases/
2018/01/prweb15098178.htm.

[36] Rusty Russell. 2008. Virtio: Towards a De-facto Standard for Virtual
I/O Devices. ACM Operating Systems Review 42, 5 (2008), 95–103.

[37] Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang. 2014. A Retargetable
Static Binary Translator for the ARM Architecture. ACM Transactions

on Architecture and Code Optimization 11, 2 (2014), 18:1–18:25.
[38] SuperEvilMegaCorp.Com. 2018. Vainglory. https://play.google.com/

store/apps/details?id=com.superevilmegacorp.game.

https://www.amd.com/en/technologies/virtualization
https://www.amd.com/en/technologies/virtualization
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
http://www.android-x86.org/
http://www.android-x86.org/
https://www.bignox.com/
https://www.bluestacks.com/bluestacksgaming-platform-bgp-android-emulator.html
https://www.bluestacks.com/bluestacksgaming-platform-bgp-android-emulator.html
https://www.facebook.com/bluestacksTW/posts/367309563685501
https://www.facebook.com/bluestacksTW/posts/367309563685501
https://techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/
https://techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/
https://www.chromium.org/chromium-os/chrome-os-systems-supporting-android-apps
https://www.chromium.org/chromium-os/chrome-os-systems-supporting-android-apps
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
http://s3.amazonaws.com/download-aws.futuremark.com/3DMark_11_Whitepaper.pdf
http://s3.amazonaws.com/download-aws.futuremark.com/3DMark_11_Whitepaper.pdf
https://www.genymotion.com/
https://www.genymotion.com/
http://www.jide.com/remixos
https://www.khronos.org/opengl/wiki/Multisampling
https://www.khronos.org/opengl/wiki/Multisampling
http://www.koplayer.com/
http://www.koplayer.com/
http://linux-test-project.github.io/
http://linux-test-project.github.io/
http://www.memuplay.com/
http://www.memuplay.com/
https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/
https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/
https://github.com/MicrosoftDocs/WSL/tree/live/LTP_Results/16273
https://github.com/MicrosoftDocs/WSL/tree/live/LTP_Results/16273
https://newzoo.com/insights/articles/the-big-screen-opportunity-in-southeast-asia/
https://newzoo.com/insights/articles/the-big-screen-opportunity-in-southeast-asia/
https://www.prweb.com/releases/2018/01/prweb15098178.htm
https://www.prweb.com/releases/2018/01/prweb15098178.htm
https://play.google.com/store/apps/details?id=com.superevilmegacorp.game
https://play.google.com/store/apps/details?id=com.superevilmegacorp.game

[39] Tencent.Com. 2018. DAOW Android Game Emulator. https://syzs.qq.
com/en/.

[40] Tencent.Com. 2018. MyApp Android Market. https://sj.qq.com/
myapp/.

[41] Tencent.Com. 2018. PUBG Mobile. https://play.google.com/store/
apps/details?id=com.tencent.ig.

[42] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E
Porter. 2016. A Study of Modern Linux API Usage and Compatibility:
What to Support When You’re Supporting. In Proceedings of ACM

EuroSys. 16.
[43] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM

Martins, Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H
Leung, and Larry Smith. 2005. Intel Virtualization Technology. IEEE
Computer 38, 5 (2005), 48–56.

[44] Unity3d.Com. 2018. Unity - Multiplatform - Publish your game to over
25 platforms. https://unity3d.com/unity/features/multiplatform.

[45] UnrealEngine.Com. 2018. Unreal Engine - Platform Development.
https://docs.unrealengine.com/en-us/Platforms.

[46] Timothy Vidas and Nicolas Christin. 2014. Evading Android Runtime
Analysis via Sandbox Detection. In Proceedings of ACM AsiaCCS. 447–
458.

[47] VirtualBox.Org. 2018. Open-source Oracle VM VirtualBox. https:
//www.virtualbox.org/.

[48] VirtualBox.Org. 2018. VirtualBox - Guest Additions. https://www.
virtualbox.org/manual/ch04.html#guestadd-3d.

[49] VirtualBox.Org. 2018. VirtualBox - Technical background. https:
//www.virtualbox.org/manual/ch10.html#technical-components.

[50] Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, and
Xiaoming Liu. 2016. Energy-Efficient Aquatic Environment Monitor-
ing Using Smartphone-Based Robots. ACM Transactions on Sensor

Networks 12, 3 (2016), 25:1–25:28.
[51] Benjamin Watson, Victoria Spaulding, Neff Walker, and William Rib-

arsky. 1997. Evaluation of the Effects of Frame Time Variation on
VR Task Performance. In Proceedings of IEEE Virtual Reality Annual

International Symposium. 38–44.
[52] Tom Wijman. 2018. Mobile Revenues Account for More

Than 50% of the Global Games Market in 2018. https:
//newzoo.com/insights/articles/global-games-market-reaches-
137-9-billion-in-2018-mobile-games-take-half/.

[53] Tom Wijman. 2018. TinyDancer: An android library for display-
ing smoothness from the choreographer. https://github.com/
friendlyrobotnyc/TinyDancer.

[54] Da Yu and Wushao Wen. 2012. Non-Access-Stratum Request Attack
in E-UTRAN. In Proceedings of IEEE Computing, Communications and

Applications Conference. 48–53.
[55] Peng Zhao, Kaigui Bian, Tong Zhao, Xintong Song, Jung-Min

Jerry Park, Xiaoming Li, Fan Ye, and Wei Yan. 2017. Understand-
ing Smartphone Sensor and App Data for Enhancing the Security of
Secret Questions. IEEE Transactions on Mobile Computing 16, 2 (2017),
552–565.

https://syzs.qq.com/en/
https://syzs.qq.com/en/
https://sj.qq.com/myapp/
https://sj.qq.com/myapp/
https://play.google.com/store/apps/details?id=com.tencent.ig
https://play.google.com/store/apps/details?id=com.tencent.ig
https://unity3d.com/unity/features/multiplatform
https://docs.unrealengine.com/en-us/Platforms
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/manual/ch04.html#guestadd-3d
https://www.virtualbox.org/manual/ch04.html#guestadd-3d
https://www.virtualbox.org/manual/ch10.html#technical-components
https://www.virtualbox.org/manual/ch10.html#technical-components
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://github.com/friendlyrobotnyc/TinyDancer
https://github.com/friendlyrobotnyc/TinyDancer

	Abstract
	1 Introduction
	2 State of the Art
	3 Understanding AOVB
	3.1 Quantifying Smoothness
	3.2 Bottleneck
	3.3 Optimizations

	4 DAOW: Design & Implementation
	4.1 Profiling Android Games
	4.2 Android-x86 Customization
	4.3 Rewriting Binaries on Loading
	4.4 Dynamic Binary Translation
	4.5 Emulating Linux Syscalls
	4.6 Security Defenses
	4.7 Gaming Support

	5 Evaluation
	5.1 Methodology
	5.2 User-Reported Results
	5.3 Micro-Benchmark Results

	6 Conclusion
	References

